Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Public Health ; 11: 1157363, 2023.
Article in English | MEDLINE | ID: covidwho-20234340

ABSTRACT

Purpose: To analyse the association between the mortality during the summer 2022 and either high temperatures or the COVID-19 wave with data from the Catalan Health Care System (7.8 million people). Methods: We performed a retrospective study using publicly available data of meteorological variables, influenza-like illness (ILI) cases (including COVID-19) and deaths. The study comprises the summer months of the years 2021 and 2022. To compare the curves of mortality, ILI and temperature we calculated the z-score of each series. We assessed the observed lag between curves using the cross-correlation function. Finally, we calculated the correlation between the z-scores using the Pearson correlation coefficient (R2). Results: During the study period, 33,967 deaths were reported in Catalonia (16,416 in the summer of 2021 and 17,551 in the summer of 2022). In 2022, the observed lag and the correlation between the z-scores of temperature and all-cause deaths was 3 days and R2 = 0.86, while between ILI and all-cause deaths was 22 days and R2 = 0.21. This high correlation between temperature and deaths increased up to 0.91 when we excluded those deaths reported as COVID-19 deaths, while the correlation between ILI and non-COVID-19 deaths decreased to -0.19. No correlation was observed between non-COVID deaths and temperature or ILI cases in 2021. Conclusion: Our study suggests that the main cause of the increase in deaths during summer 2022 in Catalonia was the high temperatures and its duration. The contribution of the COVID-19 seems to be limited.


Subject(s)
COVID-19 , Humans , Temperature , COVID-19/epidemiology , Spain/epidemiology , Retrospective Studies , Hot Temperature
2.
Arch Dis Child ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2255474

ABSTRACT

OBJECTIVE: To assess the effectiveness of mandatory use of face covering masks (FCMs) in schools during the first term of the 2021-2022 academic year. DESIGN: A retrospective population-based study. SETTING: Schools in Catalonia (Spain). POPULATION: 599 314 children aged 3-11 years attending preschool (3-5 years, without FCM mandate) and primary education (6-11 years, with FCM mandate). STUDY PERIOD: From 13 September to 22 December 2021 (before Omicron variant). INTERVENTIONS: A quasi-experimental comparison between children in the last grade of preschool (5 years old), as a control group, and children in year 1 of primary education (6 years old), as an interventional group. MAIN OUTCOME MEASURES: Incidence of SARS-CoV-2, secondary attack rates (SARs) and effective reproductive number (R*). RESULTS: SARS-CoV-2 incidence was significantly lower in preschool than in primary education, and an increasing trend with age was observed. Six-year-old children showed higher incidence than 5 year olds (3.54% vs 3.1%; OR 1.15 (95% CI 1.08 to 1.22)) and slightly lower but not statistically significant SAR (4.36% vs 4.59%; incidence risk ratio 0.96 (95% CI 0.82 to 1.11)) and R* (0.9 vs 0.93; OR 0.96 (95% CI 0.87 to 1.09)). Results remained consistent using a regression discontinuity design and linear regression extrapolation approaches. CONCLUSIONS: We found no significant differences in SARS-CoV-2 transmission due to FCM mandates in Catalonian schools. Instead, age was the most important factor in explaining the transmission risk for children attending school.

3.
Front Pediatr ; 9: 754744, 2021.
Article in English | MEDLINE | ID: covidwho-1441127

ABSTRACT

Objective: We describe and analyze the childhood (<18 years) COVID-19 incidence in Catalonia, Spain, during the first 36 weeks of the 2020-2021 school-year and to compare it with the incidence in adults. Methods: Data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests were obtained from the Catalan Agency for Quality and Health Assessment. Overall, 7,203,663 SARS-CoV-2 tests were performed, of which 491,819 were positive (6.8%). We collected epidemiological data including age-group incidence, diagnostic effort, and positivity rate per 100,000 population to analyze the relative results for these epidemiological characteristics. Results: Despite a great diagnostic effort among children, with a difference of 1,154 tests per 100,000 population in relation to adults, the relative incidence of SARS-CoV-2 for <18 years was slightly lower than for the general population, and it increased with the age of the children. Additionally, positivity of SARS-CoV-2 in children (5.7%) was lower than in adults (7.2%), especially outside vacation periods, when children were attending school (4.9%). Conclusions: A great diagnostic effort, including mass screening and systematic whole-group contact tracing when a positive was detected in the class group, was associated with childhood SARS-CoV-2 incidence and lower positivity rate in the 2020-2021 school year. Schools have been a key tool in epidemiological surveillance rather than being drivers of SARS-CoV-2 incidence in Catalonia, Spain.

4.
PLoS One ; 16(1): e0243701, 2021.
Article in English | MEDLINE | ID: covidwho-1060187

ABSTRACT

Policymakers need clear, fast assessment of the real spread of the COVID-19 epidemic in each of their respective countries. Standard measures of the situation provided by the governments include reported positive cases and total deaths. While total deaths indicate immediately that countries like Italy and Spain had the worst situation as of mid-April, 2020, reported cases alone do not provide a complete picture of the situation. Different countries diagnose differently and present very distinctive reported case fatality ratios. Similar levels of reported incidence and mortality might hide a very different underlying pictures. Here we present a straightforward and robust estimation of the diagnostic rate in each European country. From that estimation we obtain a uniform, unbiased incidence of the epidemic. The method to obtain the diagnostic rate is transparent and empirical. The key assumption of the method is that the infection fatality ratio of COVID-19 in Europe is not strongly country-dependent. We show that this number is not expected to be biased due to demography nor to the way total deaths are reported. The estimation protocol is dynamic, and it has been yielding converging numbers for diagnostic rates in all European countries as from mid-April, 2020. Using this diagnostic rate, policy makers can obtain Effective Potential Growth updated every day, providing an unbiased assessment of the countries at greater risk of experiencing an uncontrolled situation. The method developed has been and will be used to track possible improvements in the diagnostic rate in European countries as the epidemic evolves.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/mortality , COVID-19/prevention & control , Communicable Disease Control , Europe/epidemiology , European Union , Health Policy , Humans , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL